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Irrigated Shiraz vines (Vitis vinifera) upregulate gas
exchange and maintain berry growth in response to short
spells of high maximum temperature in the field

Chris J. SoarA, Marisa J. CollinsB and Victor O. SadrasA,C

ASouth Australian Research and Development Institute, GPO Box 397, Adelaide, SA 5001, Australia.
BCSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia.
CCorresponding author. Email: sadras.victor@saugov.sa.gov.au

Abstract. We tested the hypotheses that (i) a short period of highmaximum temperature disrupts gas exchange and arrests
berry growth and sugar accumulation in irrigated Shiraz vines (Vitis vinifera L.), and (ii) the magnitude of these effects
depend on the phenological window when stress occur. Using a system combining passive heating (greenhouse effect) and
active cooling (fans) to control daytime temperature, we compared vines heated to a nominal maximum of 40�C for three
consecutive days and untreated controls. Maximum air temperature in heated treatments was 7.3�C (2006–07) and 6.5�C
(2007–08) above ambient. Heat episodes were aligned with the beginning of a weekly irrigation cycle and applied in one of
four phenological windows, namely post-fruit set, pre-veraison, veraison and pre-harvest. Heating systems did not affect
relative humidity, hence vapour pressure deficit (VPD) was increased in the heated treatments and tracked the daily cycle of
temperature. Heat did not affect the dynamics of berry growth and sugar accumulation, except for a 16% reduction in berry
size and sugar content in vines heated shortly after fruit set in 2006–07. Vines upregulated stomatal conductance and gas
exchange in response to heat. Stomatal conductance, photosynthesis and transpiration at a common VPDwere consistently
higher in heated vines than in controls.We suggest that stomatal behaviour previously described as part of Shiraz anisohydric
syndrome may be adaptive in terms of heat tolerance at the expense of short-term transpiration efficiency.

Additional keywords: photosynthesis, stomatal conductance, Syrah, transpiration efficiency, total soluble solids, vapour
pressure deficit, Vitis vinifera.

Introduction

Extreme events are not unprecedented but are uncommon, and
play a disproportionate role in shaping the physiology, ecology
and evolution of terrestrial plants (Gutschick and Bassirirad
2003). In addition to their biological significance, extreme
events including heat waves are highly relevant for the wine
industry. Indirect evidence indicates that high temperature may
disrupt photosynthesis and berry sugar accumulation in
commercial vineyards (AWBC 2008; Retallick and Schofield
2008) and phenological windows when high temperature
correlates with low wine quality have been identified (Soar
et al. 2008). However, these interpretations are speculative in
the absence of experiments where heated vines and their
products are compared with unheated controls under realistic
field conditions.

Many studies of heat stress in vines have been carried out in
controlled environments with a dominant focus on low levels of
organisation and short-time responses (Wang et al. 2004, 2005;
Kadir 2006; Wang and Li 2006a, 2006b; Kadir et al. 2007;
Liu et al. 2008;Wen et al. 2008; Zhang et al. 2008). The focus of
these studies included for instance, subcellular localisation of
heat shock proteins (Zhang et al. 2008) and short-term (�24 h)
thermotolerance and related antioxidant enzyme activities

(Wang and Li 2006b). The viticultural relevance of these
studies is restricted by one or more factors including (i) the
difficulties in scaling up from low (e.g. molecular or cellular)
to the crop level of organisation and fromshort (hours) to seasonal
(months) time scales (Struik et al. 2007; Sadras et al. 2009),
(ii) unrealistic growing conditions, e.g. 40/35�C day/night
temperature for 4 weeks (Kadir 2006); (iii) artefacts typical
of pot-grown plants (Ben-Porath and Baker 1990; Wise et al.
1990; McConnaughay and Bazzaz 1991; Sadras et al. 1993a,
1993b; Passioura 2006; Sachs 2006), and (iv) other experimental
manipulations, e.g. use of detached berries (Wen et al. 2008).
Tarara et al. (2000) further discuss the artefacts generated from
growing plants in controlled environments with a particular focus
on grapevine.

Less often, heat stress has been investigated under more
realistic field conditions. Tarara et al. (2000) used ingenious
devices to heat individual bunches, Bowen et al. (2004a, 2004b)
used clear polyethylene enclosures around canes or cordons, and
Petrie and Clingeleffer (2005) used small plastic chambers to
increase bud temperature. All these studies targeted specific
questions, such as the separation of temperature and radiation
effects, but none of themaimed at the heating of thewhole canopy
that is typical of heat wave conditions.

AUTHORS’ PAGE PROOFS: NOT FOR CIRCULATION

CSIRO PUBLISHING

www.publish.csiro.au/journals/fpb Functional Plant Biology, 2009, 36, 1–14

� CSIRO 2009 10.1071/FP09101 1445-4408/09/080001



PR
OO

F
ON

LY

In this study, we used closed chambers to simulate short heat
episodes in established Shiraz vines (Vitis vinifera L.). We tested
the hypotheses that (i) three consecutive days of high maximum
temperature (~40�C) disrupt leaf gas exchange and arrest berry
growth and sugar accumulation, and (ii) the magnitude of these
effects depend on the phenological window when stress occur.

Materials and methods

Experiments were carried out over two seasons. In 2006–07, an
unreplicated trial aimed at refining heating systems and collecting
preliminary data on vine responses. In 2007–08, a fully replicated
experiment was carried out to test our working hypotheses.

Site and vines

Experiments were established on a red brown earth (Northcote
1979) at SARDI’s Nuriootpa Research Station in the Barossa
Valley of South Australia (34oS, 139oE). Gladstones (1992) and
Dry and Coombe (2004) described the climate, soils and
viticultural practices of the region. We used 10-year old Vitis
vinifera L. Shiraz vines grafted on Sauvignon Blanc roots
(2006–07) and 3-year-old own-rooted Shiraz (2007–08). Vines
were spur pruned to 40–50 buds per vine and trained to a single-
wire trellis; row spacing was 3.0m and vine spacing 2.25m.
Vines were drip-irrigated weekly frommid December at a rate of
~21 L vine�1 per irrigation.

Heating system
The system combined passive heating (greenhouse effect) and
active cooling (fans) to control daytime temperature (Fig. 1). Each
chamber enclosed a single panel of three vines and comprised a
6� 2� 2m (L�W�H) steel tubular frame covered with soft
PVC sheeting in 2006–07 and solid Standard-Clear-Greca
polycarbonate sheeting (Suntuf, Australia) in 2007–08. This
material blocks most UV radiation (200–400 nm) and has a
very high (90%) and uniform transmittance between 400 and
1600 nm.Maximum temperaturewas thermostatically controlled
by ventilation with outside cooler air circulated by four fixed fans
(Nicotra DD9–9T 315W, Australia). Air was distributed through
300mm PVC ducts with holes (100mm diameter) at 30 cm
intervals (Fig. 1). The thermostats were set to start the fans on
the low setting when the temperature in the chamber reached
42�C. The fan speed was automatically increased if temperature
continued to rise above the set point. Temperature and humidity
both inside and outside the chambers were recorded at 15min
intervals using TinyTag Ultra2 loggers (Hastings Dataloggers,
Port Macquarie, Australia) which where shielded in Stevenson
type screens.

Treatments and experimental design

In both seasons, untreated (open air) controls were compared
with vines heated to a nominal maximum of 40�C for three
consecutive days. Comparison with long-term temperature
records indicated this represents a rare (frequency: 5.6%) but
realistic event in Nuriootpa (Fig. 2). Heat episodes were aligned
with the beginning of the weekly irrigation cycle and applied in
one of four phenological windows (Appendix 1).

A single chamber was used in 2006–07; replication of heating
treatment was therefore limited to the three within-chamber vine

replicates rather than actual treatment replicates. However, to
increase the confidence in the comparison, four control panels,
each of three vines, were included. In 2007–08 the treatments
were arranged within a randomised block design with three
replicates. Each block contained one timing of heat treatment
(a single panel or three vines), and two controls (two panels).
Treatment and control plots were arranged to allow for a
minimum of one untreated buffer panel or one row between
neighbouring plots.

Vine measurements

Phenological development was assessed visually using the E-L
scale (Coombe 1995). Foliar and bunch temperatures were
measured using an Agri-therm 2 infrared thermometer (Everest
Interscience; Tucson, Arizona, USA). Measurements were
taken in the morning (commencing 1000 hours) and afternoon
(commencing 1330 hours) on days 2 and 3 of the heating
treatments. In 2006–07, temperature was measured on 15
leaves of treated and control vines. In 2007–08, temperature
was measured in two sections of the canopy per replicate at
1m from the canopy surface at 45� and 135� to the northern face.
With the infrared thermometer’s variable focal length set to
maximum, this generated a measurement spot size ~40 cm
diameter. Bunch surface temperatures were measured on 20
randomly selected bunches per replicate at each measurement
time inboth seasons.The thermometerwasheld~5–7 cmfrom the

Fig. 1. Heat chamber combining passive heating (greenhouse effect) and
active cooling (fans) to control daytime temperature.

2 Functional Plant Biology C. J. Soar et al.
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bunch, which at the maximum spot size measured a field ~3.5 cm
diameter.

In 2007–08, we measured stomatal conductance and gas
exchange in the morning (0900 to 1030 hours) and afternoon
(1230 to 1400 hours) of the second and/or third day of the post
set, pre-veraison, andveraison treatments. Stomatal conductance,
transpiration and photosynthesis were measured using a Li-Cor
6400 photosynthesis system with a red-blue LED light source
(Li-Cor Environmental Sciences, Lincoln, Nebraska, USA).
Transpiration efficiency was calculated as the ratio of
photosynthesis and transpiration. For each replicate we
measured nine sun-exposed leaves at the top of the canopy;
measurement conditions included: chamber temperature set at
ambient temperature, saturating PAR (2000mmolm�2 s�1), air
flow set to 500mmol s�1 and chamber CO2 concentration set
to 380mmolmol�1 using an external CO2 injector. Air flow into
Li-Cor 6400 was not scrubbed for humidity. Matching of the
sample and reference chamberswasperformedat thebeginningof
each treatment replicate (every nine leaves).

Stomatal conductance measured with the Li-Cor 6400
reflects the treatments only to the extent that the conditions in
the chamber enclosing the leaf duringmeasurements reflected the
environmental conditions of the corresponding treatment; this is

particularly relevant for the heated treatments. To account for
putative artefacts associated with gas-exchange chamber
conditions, we also measured stomatal conductance using an
AP4 diffusion porometer (DeltaT devices, Cambridge, UK) in 12
sun-exposed leaves per replicate. The porometer was calibrated
according to the instructions in theAP4manual using the supplied
calibration plate. Calibration was repeated in the morning and
afternoon and when changing from control to heat chamber
readings.

Periodically throughout the season leaf chlorophyll was
measured using a SPAD-502 (Minolta, Plainfield, Illinois,
USA). Measurements included three spots per leaf� five
mature leaves per vine� three vines per replicate.

Berry growth and sugar accumulation

Berries were sampled to determine fresh weight and total soluble
solids (TSS) as explained in Sadras et al. (2008). Briefly, weekly
samples were taken between 0800 and 1100 hours in the period
between 5 weeks after full bloom and harvest. Each sample
comprised 50 berries per replicate cut with scissors through
the pedicel as close as possible to their point of attachment.
For the entire 2006–07 season and before veraison in 2007–08,
each complete sample was crushed usingmoderate hand pressure
in a zip-lock resealable bag from which the juice fraction was
recovered and centrifuged at 3000 g for 10min. Total soluble
solids were measured using a constant temperature bench
refractometer. After berry softening in 2007–08 (commencing
January 5th), juice + pulp and skins were separated for other
analyses (not reported here). A 1 mL-aliquot of juice taken
from the mixed juice + pulp sample was spun at 5000g in a
bench top micro-centrifuge and measurement of TSS was
made as previously described.

Statistical analysis

Differences between treatments in canopy and bunch temperature,
stomatal conductance, photosynthesis and transpiration were
tested with ANOVA (GENSTAT version 11). Associations
between pairs of variables (e.g. stomatal conductance and VPD)
were explored with regression analysis; statistical significance
of quadratic terms was used to test departures from linearity.

Potvin et al. (1990) outlined statistical methods to compare
response curves involving repeated-measures. Here, we assessed
the effect of temperature by comparison of the functions
describing the time course of berry weight (BW) and total
soluble solids (TSS):

BW ¼ aþ BWmax

1þ e�
t�t0
bð Þ ð1aÞ

TSS ¼ a0 þ TSSmax

1þ e�
t�t0

0
b0

� � ð1bÞ

where a, a0 are constants, subscript max indicates maximum;
t0 and t00 are the transition centres, i.e. the timewhen berryweight
or total soluble solids are half-way between minimum and
maximum, and b and b0 are the transition width * 2.197�1

(SYSTAT 2002). The transition width is the time (days) it
takes for berry weight or soluble solids to raise from 0.25 to
0.75 of maximum (Sadras et al. 2008).
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Fig. 2. (a) Maximum temperature in heating treatments (circles) compared
with long-term average (solid line) and 90th percentile (dashed line) and
(b) actual maximum temperature during the experiments. Long-term
(50 years) records at Nuriootpa, South Australia, are from the Australian
Bureau of Meteorology.
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Results

Control of temperature in the field

Figure 2 compares maximum temperatures in the heated
treatments with climate records, Fig. 3 illustrates the quarter-
hourly course of temperature, relative humidity and vapour
pressure deficit in heated and untreated controls and Tables A1
and A2 (Appendix 1) summarise the treatments during the
two seasons. Maximum ambient temperature rarely exceeded
40�C. Of the 12 treatment days in each season, all except one in
2007–08 were close to or above the 90th percentile for the
time of year. Our target temperature was therefore a realistic
representation of extreme heat events in the Barossa Valley.
As expected from a passive system relying on greenhouse
effect, heating was less effective on overcast days, but these
were infrequent (e.g. 20 February 2008, Appendix Table A2).
Occasionally, the target temperature was surpassed when
ambient temperature was over 38�C in the first season;
improvements in ventilation prevented this problem in the
second season (Appendix 1). Chambers had negligible effects
on relativehumidity, and therefore vapourpressure deficit tracked
temperature (Fig. 3). Chamber air flux was high while the fans
were in operation with volume turnover occurring once every
13–16 s depending on fan speed. However, even when the fans
were not operating (e.g. at night) relative humidity inside the
chamber was not significantly different to ambient.

Canopy and bunch temperature

Inter- and intra-seasonal variation generated a range ofmaximum
ambient temperature from 20.7 to 41.0�C during the treatment
periods. Over this two-fold range, the heating treatments
consistently increased foliar and bunch temperature relative to
controls (Fig. 4).

Stomatal conductance and gas exchange

Heating increased stomatal conductance, leaf transpiration and
leaf photosynthesis with more marked effects in the morning
than in the afternoon (Fig. 5). For the pooled data, stomatal
conductance accounted for 69% of the variation in leaf
photosynthesis (inset Fig. 5). Heating had no detectable effect
on leaf chlorophyll as measured with SPAD (not shown).

The results obtained with the Li-Cor 6400 in Fig. 5 are a true
reflection of the treatments only to the extent that the conditions
in the chamber enclosing the leaf during measurements reflected
the environmental conditions of the corresponding treatment;
this is particularly relevant for the heated treatments. Vapour
pressure deficit inside the Li-Cor leaf chamber correlated well
with ambient VPD (r2 = 0.80 for controls and 0.77 for heated
treatments, both P< 0.0001). Furthermore, measurements with a
diffusion porometer also showed that high temperature increased
stomatal conductance in comparison to controls (Fig. 6).

Effects of temperature at a common VPD

We analysed the effects of temperature at a common VPD on
stomatal conductance, leaf photosynthesis and leaf transpiration
(Fig. 7). Our experimental design (see Materials and methods)
included two control replicates per block to increase the degrees
of freedom for comparisons, and this involved a trade-off in terms

of higher density of measurements in controls compared with
heated treatments. Stomatal conductance and gas exchange were
therefore uniformly distributed in the range of VPD from ~1.1 to
5.1 kPa in controls, whereas measurements in heated leaves were
more clustered at the extremes of the rangewith a gap between ~3
and 4 kPa. The clustering of data in the heated treatment was,
however, unrelated to morning v. afternoon measurements
(Fig. 7).

Stomatal conductance at a common VPD was consistently
higher in heated vines than in controls (Fig. 7a). Non-linear terms
in the response of stomatal conductance to VPD were not
significant, i.e. P > 0.91 in controls and P > 0.31 in heated
vines. The linear rate of change in stomatal conductance with
VPDwas 62%higher in heated vines than in controls (–89� 16.5
v. –55� 9.6mmol H2Om�2 s�1 kPa�1) but this difference was
not significant (P > 0.05). Measurements with diffusion
porometer reinforced the conclusion that heating increased
stomatal conductance at a common VPD (inset Fig. 7a).

Photosynthetic rate at a commonVPDwas consistently higher
in heated vines than in controls (Fig. 7b). Non-linear terms in
the response of net photosynthesis to VPD were not significant,
i.e. P > 0.27 in controls and P > 0.86 in heated vines. The linear
rate of change in photosynthesis with VPD was similar in both
treatments, i.e.–1.27� 0.154 in controls and–1.36� 0.215mmol
CO2m

�2 s�1 kPa�1 in heated vines.
Leaf transpiration rate of controls increased with VPD at an

average rate of 0.73� 0.138mol H2Om�2 s�1 kPa�1 (non-linear
term: P > 0.35) and was unrelated to VPD (P > 0.45) in heated
vines (Fig. 7c). Transpiration of control leaves at a common
VPD was higher in the afternoon than in the morning (dotted
lines in Fig. 7c). Consistent with this response of transpiration
and the lack of hysteresis in photosynthesis (Fig. 7b), the plot
of transpiration efficiency as a function of VPD�1 revealed a
strong diurnal hysteresis in controls (Fig. 8). In controls,
transpiration efficiency at low VPD was higher in the morning
than in the afternoon, and morning and afternoon efficiencies
converged with high VPD. The response of transpiration
efficiency to VPD in heated leaves was similar to that of
controls in the afternoon.

Berry growth and sugar accumulation

The use of different plant material in the two seasons (see
Method) did not seem to generate differences in berry
responses to temperature (Fig. 9). A single model (Eqn 1a)
with common parameters for all treatments accounted for
96.4% of the variance in berry weight in 2006–07 and 96.5%
of the variance in 2007–08 (both P< 0.001). Adding a separate
constant a for each treatment but maintaining a common value
for BWmax and b improved the model significantly (P < 0.001).
This improvement is related to the smaller berry weight for post-
set treatment in 2006–07 and the veraison treatment in 2007–08.
Further tests directly comparing these two treatments and their
respective controls indicated significant differences (P< 0.05),
i.e. the slopes of the regressions between berry weight in heated
and control berries were lower than 1, i.e. 0.79� 0.059 g g�1 for
post-set treatment in 2006–07 and 0.90� 0.032 g g�1 for the
veraison treatment in 2007–08 (insets in Fig. 9).

A single model (Eqn 1b) with a common set of parameters
accounted for 99% of the variation in accumulation of total

4 Functional Plant Biology C. J. Soar et al.
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soluble solids (P < 0.001) indicating no difference between
treatments in 2007–08 (Fig. 9). In 2006–07, the best model
included a different constant term (a0) for each treatment

(P< 0.001, r2 = 0.99), allowing for a slightly lower TSS in the
post-set treatment. Direct comparison of post-set and control
treatments, however, indicated no significant difference in TSS
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Fig. 3. Temperature, relative humidity and vapour pressure deficit inside (open symbols) and
outside (closed symbols) the heating chambers during the post-set treatment in 2007. The treatment
was applied from the 10th to the 12th of December inclusive. As background, trajectories are
expanded by two days both sides of the treatment period.
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(P > 0.05) and, associatedwith differences in berryweight, a 16%
reduction in the amount of sugar per berry (P< 0.05).

Discussion

Heating treatments: realism, limitations and potential
artefacts

Our heating treatments generated extreme but realistic maximum
temperatures (Fig. 2). To avoid unrealistic interactions between
temperature and vapour pressure deficit in experiments
where temperature is manipulated, vapour pressure deficit
rather than relative humidity needs to be controlled (Hall and
Sadras 2009). An important feature of our treatments was
therefore the realistic time courses of vapour pressure deficit
(Fig. 3). Similarly important, a high turnover rate, i.e. up to one
chamber volume replaced every 13 s, prevented air stratification
in the chamber.

The main aspect where treatments departed from real heat
wave conditions is that we did not manipulate night temperature,
which is normally above average during heat waves (W. Grace,
pers. comm.) Night temperature can affect plant processes with
consequences for crop yield and quality (Thomas and Raper
1981; Warrag and Hall 1984; Mutters and Hall 1992; Mori et al.
2005; Koshita et al. 2007; Aguirrezábal et al. 2009).

Other secondary effects included a slight reduction in PAR
(10%), increased diffuse radiation and reduced UV radiation.
Measurements and modelling support the notion that canopy
and ecosystem photosynthesis increase with increased diffuse
radiation (Sinclair et al. 1992; Roderick et al. 2001; Rodriguez
and Sadras 2007; Urban et al. 2007; Wohlfahrt et al. 2008).
Where diffuse radiation increased in association with cloudiness
and atmospheric particles, three mechanisms accounted
for enhancement of photosynthesis: (i) canopy changes,
i.e. improved distribution of light in the canopy profile,
(ii) microclimatic changes, i.e. reduction in temperature and
VPD, and (iii) leaf changes, i.e. stimulation of photochemical
reactions and stomatal opening via an increase of blue/red light
ratio (Urban et al. 2007). The first mechanism is quantitatively
the most important (Roderick et al. 2001; Urban et al. 2007;
Wohlfahrt et al. 2008) but is not relevant to our measurements of
individual leaf photosynthesis using a red-blue LED light source
under saturating light. Likewise, microclimatic changes were
not relevant, as high diffuse radiation in the chambers was
paralleled with high temperature and high VPD. Changes in
leaf-level photosynthesis associated with changes in blue/red
ratio of light were unlikely, as the chamber has a high and
uniform transmittance between 400 and 1600 nm. Long-term
exclusion or enhancement of UV-B alters leaf traits including
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photosynthetic pigment composition, specific leaf mass and
UV-B absorbing flavonoids (Láposi et al. 2009). To minimise
the impact of these and other secondary factors, we established
treatments for only 3 days.

Canopy temperature, stomatal conductance
and gas exchange

Studies with grapevine in controlled environments showed that
heat stress can trigger the production and accumulation of heat-
shock proteins in young leaves, reduce stomatal conductance,
disrupt the photosynthetic apparatus and reduceCO2 assimilation

(Sepulveda and Kliewer 1986; Kadir 2006; Kadir et al.
2007; Zhang et al. 2008). Growing conditions in most of these
studies, however, are unrepresentative of vineyard situations
(see Introduction).

Our aim was to measure vine responses in realistic field
conditions, while minimising secondary effects from heat
chambers. We found that recently irrigated Shiraz vines
responded to short duration heat shock with an increase in
stomatal conductance, a corresponding increase in transpiration,
a small to moderate increase in photosynthesis and no evident
degradation of leaf chlorophyll in young leaves.
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Bowen et al. (2004a, 2004b) used clear polyethylene

enclosures around Merlot canes or cordons which increased
maximum temperatures by 5–8�C and enhanced photosynthetic
rate in association with increased mesophyll and stomatal
conductance in relation to controls. Our data indicated
stomatal conductance was the dominant source of variation in
photosynthesis (inset of Fig. 5). Diffuse radiation inside the
chamber might have contributed to the enhancement of
photosynthesis in heated leaves, but this was unlikely, as
discussed in the previous section. In our study relative humidity
in the chambers was not significantly different from ambient
and vapour pressure deficit was dramatically and realistically
increased (Hall and Sadras 2009). We propose, therefore, that
the increased stomatal conductance, verified with both diffusion
porometer and gas exchange measurements, and enhanced gas
exchange in our heated vines was a likely response to high
temperature rather than an artefact of growing conditions.

Generally, stomatal responses partially counteract shifts in
the balance between supply and demand of water, e.g. increased
VPD shifts the hydraulic balance towards demand, and stomata
respond to increased transpiration rate by reducing their
apertures (Mott and Parkhurst 1991; Fredeen and Sage 1999;
Buckley 2005). The coordination between stomatal conductance

and water balance is generally accepted, but the underlying
mechanisms are still controversial (Buckley 2005). In this
context, the responses of stomatal conductance and gas
exchange to increasing VPD in controls were typical (Brodribb
and Jordan 2008; Pou et al. 2008): stomatal conductance,
photosynthesis and water use efficiency decreased and
transpiration increased. Against this pattern, heated vines
showed qualitative and quantitative differences (Fig. 7).

Fredeen and Sage (1999) concluded that VPD and leaf
temperature have independent effects on stomatal conductance
of Picea glauca (Moench) Voss., and consolidated this notion in
a two-phase model of transpiration v. VPD (their fig. 4). In the
first phase, transpiration increased linearly with VPD up to a
temperature-dependent threshold, e.g. ~2 kPa at leaf temperature
of 35�C. In the second phase, transpiration was stable. In the
context of stomata responses to supply and demand ofwater, they
proposed this pattern was mediated by (i) a reduction in water
viscosity and increase in plant membrane permeability with
increasing temperature leading to (ii) a linear increase in water
supply to guard cells, and (iii) an exponential increase in VPD
with temperature eventually leading to (iv) a decline in stomatal
conductance restricting transpiration (Fredeen and Sage 1999).
We suggest that the lack of net response of transpiration to VPD
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in our heated vines (Fig. 7c) corresponded to the second phase in
the model of Fredeen and Sage (1999) where non-stomatal
limitations were impacting on water loss from the leaf surface.

We speculate that the first phase was not evident because of
the scarcity of data for VPD <2 kPa under our experimental
conditions.

Irrespective of the physiological mechanism, stomatal
regulation allowed for heated, well-watered Shiraz to maintain
a relativelyhighand steady transpirationflux independentofVPD
(dashed line in Fig. 7c). The lack of relationship between leaf
transpiration and VPD, and the maintenance of a relatively high
transpiration rate in our heated vines compares with the
decoupling and maintenance of a relatively low rate of
transpiration in water-stressed grapevine (Pou et al. 2008) and
olive (Olea europaea L.; fig. 5 in Moriana et al. 2002). Stomatal
regulation has been often interpreted in terms of optimisation of
transpiration efficiency and prevention of xylem cavitation
(Kramer and Boyer 1995; Buckley 2005). We suggest that
stomatal responses previously described as part of Shiraz
anisohydric behaviour (Schultz 2003; Soar et al. 2006) may
play a role in terms of heat stress tolerance. In common with
previous reports in other species (Lu et al. 1994; Radin et al.
1994; Amani et al. 1996), our study indicates that stomatal
regulation in heat-stressed Shiraz may have favoured
evaporative cooling at the expense of short-term transpiration
efficiency. A corollary of this is that timely pulses of water before
heat waves could help mitigate the otherwise damaging effects
of high daytime ambient temperature on the photosynthetic
capacity of plants with anisohydric stomatal regulation.
Specific studies on the interaction between water supply, heat
stress and cultivar are required for a direct test of this hypothesis;
viticultural implications are discussed below.

Berry growth and sugar accumulation

We characterised the dynamics of berry growth and sugar
accumulation to test the hypothesis that high maximum
temperature alone can disrupt berry development and ripening,
and to determine whether there are phenological stages that are
more vulnerable to high temperature. We found significant
reductions in berry size for the post-set treatment in 2006–07
and the veraison treatment in 2007–08 (Fig. 8). A reduction in
berry size associated with high temperature shortly after fruit set
is consistent with the active process of cell division in fruit tissues
at this developmental stage (Coombe and Iland 2004). Heating
in the post-set stage raised maximum temperatures up to
42.1–45.7�C in 2006–07 whereas the corresponding treatment
in 2007/08 reached 35.3–41.5�C (Appendix 1). These differences
may account for the measurable effect in 2006–07 (i.e. 16%
reduction in berry size and sugar per berry) and the lack of
response in 2007–08. The reduction of berry size in the
veraison treatment in 2007–08 was clearly associated with
differences in berry size before the imposition of the treatment,
so we can safely conclude this difference was related to vine-to-
vine variability rather than to the treatment. The dynamics of TSS
in berries were largely unaffected by heating.

Some studies supported the notion that high temperature could
reduce berry growth in a process mediated by reductions in
stomatal conductance and net carbon assimilation (Matsui
et al. 1986; Sepulveda and Kliewer 1986). Kliewer (1977)
reported variety-dependent reductions in berry size when vines
were exposed to high temperature (32–40�C) from bloom to fruit
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set in controlled environments. Some controlled-environment
experiments indicated that sugar accumulation is sensitive to
temperature at early berry growth stages (Buttrose et al. 1971;

Hale and Buttrose 1974), others pointed to post-veraison as a
vulnerable stage (Jackson and Lombard 1993) and many found
no effects (Radler 1965; Kliewer 1970; Spayd et al. 2002).
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Differences in duration and intensity of heat stress, interactions
with other factors (chiefly water supply and radiation), artefacts
from controlled environments or a combination of these may
account for the differenceswith our studywherewe found little or
no alteration of berry growth in vines exposed to short episodes of
heat stress at several phenological stages.

Viticultural implications

The short, extreme heat treatments imposed to field-grown
irrigated Shiraz did not affect berry growth or sugar
accumulation, except for the post-set treatment in 2006–07
when maximum temperature was maintained above 42�C for
three consecutive days. Consistent with the ability of irrigated
Shiraz tomaintain berry growth and sugar accumulation, stomatal
conductance and gas exchange were either maintained at the
levels of controls or enhanced. In addition to the duration of heat
stress, three main factors could account for the discrepancy
between this response and the apparent arrest of berry growth
commonly attributed to heat waves in the Australian wine
industry: night temperature, wind and water supply. Heat
waves in south-eastern Australia increase not only maximum
but also night temperature and are associated with northerly
hot and dry winds (Grace and Curran 1993). For some plant
processes such as seed set and seed composition, the influence
of temperature may be more prominent during the night than
during the day (Warrag and Hall 1984; Mutters and Hall 1992;
Aguirrezábal et al. 2009). In grapevine, high night temperature
may alter berry composition (Kliewer 1973; Koshita et al. 2007).
Under the experimental conditions of Greenspan et al. (1996),
Cabernet Sauvignon berries showed marked day–night
fluctuations, i.e. daytime reduction and night-time increase in
diameter, that were more noticeable before veraison and under
water deficit. Wind speed alters the boundary layer of the canopy
and therefore influences the response of transpiration to
temperature, vapour pressure deficit and stomatal conductance
(Jarvis andMcNaughton 1986; Aphalo and Jarvis 1993). Heating
in this study was applied at the beginning of an irrigation cycle,
therefore the chances of water deficit arising during treatment
were reduced and the capacity for evaporative cooling was
maintained. However, water deficit and heat stress often co-
occur, particularly in rainfed systems or production systems
with limited irrigation. Both stresses interact in complex ways
at scales frommolecular to whole-crop and regional (Warrag and
Hall 1984; Barnabas et al. 2008; Dalla-Salda et al. 2009). The
generally non-additive effect of water and heat stress has
potentially damaging consequences. Crown necrosis and death
of individual trees, for example, were reported following the heat
and drought wave of 2003 in France (Dalla-Salda et al. 2009).

Extrapolation of these results to other grapevine species
or varieties needs to account for genotype-dependent
thermotolerance and water relations (Schultz 1997; Kadir
2006; Soar et al. 2006; Kadir et al. 2007). In the study of
Kadir (2006), the reduction in quantum efficiency of
Photosystem II after exposure to 40/35�C (day/night) ranked
Cabernet Sauvignon> Semillon> Pinot Noir. Differences
between anisohydric (e.g. Shiraz) and isohydric (e.g. Grenache)
types in stomatal response to VPD and soil drying (Schultz 2003;
Soar et al. 2006) may be relevant for heat stress tolerance. In

comparison to Grenache, Shiraz maintained high stomatal
conductance and transpiration in dry soil, i.e. predawn leaf water
potential up to –1.4MPa (Schultz 2003) and high VPD, i.e. up to
5 kPa (Soar et al. 2006). Anisohydric behaviour may contribute
to heat dissipation, provided soil water content is sufficient to
maintain transpiration, whereas reduction in stomatal
conductance in isohydric plant types might enhance the
damaging effects of high ambient temperature. Upregulation of
stomatal conductance improved the tolerance to heat stress in some
combinations of plants and environments (Radin et al. 1994;
Banowetz et al. 2008; Natarajan and Kuehny 2008) but direct
comparisons among grape varieties are required, including
the probing for trade-offs between upregulation of stomatal
conductance and other attributes with putative value for heat
tolerance, e.g. membrane thermostability (Blum et al. 2001;
Hong et al. 2003).

Depending on the relative importance of day and night
temperature, wind, and the interaction between heat, water
supply and cultivar, different practices may have different
effectiveness in dealing with heat waves. For example, shading
is likely to be less effective for physiological disruption caused
by high night temperature and irrigation is less likely to be
effective in isohydric plant types. Thus, disentangling the main
components of heat waves and accounting for variety-dependent
interactions between temperature and water are critical to devise
management strategies to deal with heat stress in vineyards.
Irrigated Shiraz in our study, however, showed a larger than
expected capacity to cope with three consecutive days of
extreme heat, partially accounted by physiological upregulation
of gas exchange.
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Appendix 1

Table A1. Comparison of maximum temperature, minimum relative humidity and maximum vapour pressure deficit (VPD) in control and heated
treatments applied at four phenological windows in 2006–07. Each heating episode lasted 3 days

Heating window Day Maximum temperature (�C) Minimum relative humidity Maximum VPD (kPa)
Control Heated Diff. Control Heated Diff. Control Heated Diff.

18–20 December 1 38.2 45.7 7.5 9.0 7.2 –1.8 6.05 9.18 3.13
post-set 2 36.1 42.1 6.0 13.0 12.7 –0.3 5.19 7.20 2.01
E-L 31* 3 38.5 44.9 6.5 12.8 11.3 –1.5 5.94 8.40 2.46
8–10 January 1 28.5 41.7 13.2 25.3 17.8 –7.5 2.85 6.66 3.80
pre-veraison 2 35.4 43.4 8.0 16.3 12.3 –4.0 4.80 7.72 2.92
E-L 33 3 41.0 46.2 5.2 14.4 12.7 –1.7 6.49 8.87 2.39
22–24 January 1 28.4 37.6 9.2 38.2 40.9 2.7 2.37 3.70 1.33
Veraison 2 28.7 36.7 8.0 30.2 36.4 6.1 2.44 3.40 0.95
E-L 35 3 30.4 38.5 8.1 31.5 38.5 6.9 2.93 4.05 1.12
12–14 February 1 35.7 41.1 5.5 23.5 19.6 –4.0 4.46 6.29 1.83
pre-harvest 2 38.5 43.5 5.1 21.2 17.2 –4.0 5.34 7.39 2.05
2 weeks before E-L 37 3 36.1 41.1 5.0 28.5 23.9 –4.6 4.26 5.99 1.73

*Phenological stage in E-L scale (Coombe 1995).

Table A2. Comparison of maximum temperature, minimum relative humidity and maximum vapour pressure deficit (VPD) in control and heated
treatments applied at four phenological windows in 2007–08

Each heating episode lasted 3 days; the days before and after establishment of treatments are also shown. Night differences (heated – control) are shown
for minimum temperature and maximum relative humidity

Heating window Day Maximum temperature Minimum relative Maximum VPD (kPa) Night difference
(�C) humidity (%) Control Heated Diff. Min temp. Max relative

Control Heated Diff. Control Heated Diff. (�C) humidity (%)

10–12 December Before 24.3 24.4 0.1 33.5 32.4 –1.1 1.99 2.00 0.02 –0.1 –1.5
post-set 1 24.5 35.3 10.8 25.4 20.9 –4.5 2.21 4.40 2.19 –0.3 0.7
E-L 31* 2 28.8 39.0 10.2 27.4 23.0 –4.4 2.85 5.35 2.50 1.5 –3.8

3 32.4 41.5 9.2 18.6 18.2 –0.4 3.94 6.58 2.63 0.4 –2.6
After 37.1 37.0 –0.1 14.6 14.2 –0.4 5.38 5.40 0.02 –0.1 5.1

7–9 January Before 33.9 33.5 –0.3 20.5 20.7 0.3 4.14 4.10 –0.05 0.0 –3.7
pre-veraison 1 32.4 39.9 7.5 21.6 21.3 –0.3 3.77 5.72 1.96 0.0 –1.1
E-L 33 2 32.8 39.5 6.7 24.4 24.1 –0.3 3.72 5.33 1.61 0.3 –2.6

3 37.8 42.6 4.8 15.3 18.5 3.2 5.53 6.84 1.32 0.1 –1.3
After 44.4 45.0 0.5 9.9 9.8 –0.1 8.39 8.55 0.17 0.9 4.2

21–23 January Before 28.6 28.2 –0.4 36.4 36.8 0.5 2.47 2.39 –0.08 0.0 –1.9
veraison 1 27.1 34.2 7.1 25.8 27.0 1.3 2.57 3.81 1.24 –0.1 –1.1
E-L 35 2 29.9 37.2 7.4 26.1 25.9 –0.1 3.07 4.49 1.42 0.3 –2.7

3 34.7 40.7 6.0 12.0 16.9 4.9 4.64 5.92 1.28 0.2 –0.9
After 32.4 32.5 0.1 27.2 27.1 0.0 3.53 3.55 0.01 1.1 –6.9

18–20 February Before 37.3 37.3 –0.1 13.6 14.4 0.9 5.43 5.40 –0.03 –0.1 –1.5
pre-harvest 1 38.1 41.5 3.4 14.2 17.2 3.0 5.70 6.52 0.83 0.9 –1.1
2 weeks before E-L 37 2 39.8 42.0 2.2 15.1 16.5 1.4 6.23 6.77 0.54 0.7 4.8

3 20.7 23.9 3.2 65.9 56.7 –9.2 0.82 1.26 0.44 0.0 –3.4
After 30.3 29.6 –0.8 30.8 32.8 2.0 2.98 2.77 –0.21 0.4 0.4

*Phenological stage in E-L scale (Coombe 1995).
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